博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
关于Jackson默认丢失Bigdecimal精度问题分析
阅读量:6901 次
发布时间:2019-06-27

本文共 10783 字,大约阅读时间需要 35 分钟。

问题描述

最近在使用一个内部的RPC框架时,发现如果使用Object类型,实际类型为BigDecimal的时候,作为传输对象的时候,会出现丢失精度的问题;比如在序列化前为金额1.00,反序列化之后为1.0,本身值可能没有影响,但是在有些强依赖金额的地方,会出现问题;

问题分析

查看源码发现RPC框架默认使用的序列化框架为Jackson,那简单,看一下本地是否可以重现问题;

1.准备数据传输bean

public class Bean1 {     private String p1;    private BigDecimal p2;         ...省略get/set...} public class Bean2 {     private String p1;    private Object p2;         ...省略get/set...}

为了更好的看出问题,分别准备了2个bean;

2.准备测试类

public class JKTest {     public static void main(String[] args) throws IOException {        ObjectMapper mapper = new ObjectMapper();         Bean1 bean1 = new Bean1("haha1", new BigDecimal("1.00"));        Bean2 bean2 = new Bean2("haha2", new BigDecimal("2.00"));         String bs1 = mapper.writeValueAsString(bean1);        String bs2 = mapper.writeValueAsString(bean2);         System.out.println(bs1);        System.out.println(bs2);         Bean1 b1 = mapper.readValue(bs1, Bean1.class);        System.out.println(b1.toString());                 Bean2 b22 = mapper.readValue(bs2, Bean2.class);        System.out.println(b22.toString());    }}

分别对Bean1和Bean2进行序列化和反序列化操作,然后查看结果;

3.显示结果

{"p1":"haha1","p2":1.00}{"p1":"haha2","p2":2.00}Bean1 [p1=haha1, p2=1.00]Bean2 [p1=haha2, p2=2.0]

4.结果分析

结果可以发现两个问题:

1.在序列化的时候2个bean都没有问题;
2.重现了问题,Bean2在反序列化时,p2出现了精度丢失的问题;

5.源码分析

通过一步一步查看Jackson源码,最终定位到UntypedObjectDeserializer的Vanilla内部类中,反序列方法如下:

public Object deserialize(JsonParser p, DeserializationContext ctxt) throws IOException        {            switch (p.getCurrentTokenId()) {            case JsonTokenId.ID_START_OBJECT:                {                    JsonToken t = p.nextToken();                    if (t == JsonToken.END_OBJECT) {                        return new LinkedHashMap
(2); } } case JsonTokenId.ID_FIELD_NAME: return mapObject(p, ctxt); case JsonTokenId.ID_START_ARRAY: { JsonToken t = p.nextToken(); if (t == JsonToken.END_ARRAY) { // and empty one too if (ctxt.isEnabled(DeserializationFeature.USE_JAVA_ARRAY_FOR_JSON_ARRAY)) { return NO_OBJECTS; } return new ArrayList
(2); } } if (ctxt.isEnabled(DeserializationFeature.USE_JAVA_ARRAY_FOR_JSON_ARRAY)) { return mapArrayToArray(p, ctxt); } return mapArray(p, ctxt); case JsonTokenId.ID_EMBEDDED_OBJECT: return p.getEmbeddedObject(); case JsonTokenId.ID_STRING: return p.getText(); case JsonTokenId.ID_NUMBER_INT: if (ctxt.hasSomeOfFeatures(F_MASK_INT_COERCIONS)) { return _coerceIntegral(p, ctxt); } return p.getNumberValue(); // should be optimal, whatever it is case JsonTokenId.ID_NUMBER_FLOAT: if (ctxt.isEnabled(DeserializationFeature.USE_BIG_DECIMAL_FOR_FLOATS)) { return p.getDecimalValue(); } return p.getNumberValue(); case JsonTokenId.ID_TRUE: return Boolean.TRUE; case JsonTokenId.ID_FALSE: return Boolean.FALSE; case JsonTokenId.ID_END_OBJECT: // 28-Oct-2015, tatu: [databind#989] We may also be given END_OBJECT (similar to FIELD_NAME), // if caller has advanced to the first token of Object, but for empty Object return new LinkedHashMap
(2); case JsonTokenId.ID_NULL: // 08-Nov-2016, tatu: yes, occurs return null; //case JsonTokenId.ID_END_ARRAY: // invalid default: } return ctxt.handleUnexpectedToken(Object.class, p); }

在Bean2中的p2是一个Object类型,所以Jackson中给定的反序列化类为UntypedObjectDeserializer,这个比较容易理解;然后根据具体的数据类型,调用不用的读取方法;因为json这种序列化方式,除了数据,本身并没有存放具体的数据类型,所有这里Jackson认定2.00为一个ID_NUMBER_FLOAT类型,在这个case下面有2个选择,默认是直接调用getNumberValue()方法,这种情况会丢失精度,返回结果为2.0;或者开启使用USE_BIG_DECIMAL_FOR_FLOATS特性,问题解决也很简单,使用此特性即可;

6.使用USE_BIG_DECIMAL_FOR_FLOATS特性

ObjectMapper mapper = new ObjectMapper();mapper.enable(DeserializationFeature.USE_BIG_DECIMAL_FOR_FLOATS);

再次测试,可以发现结果如下:

{"p1":"haha1","p2":1.00}{"p1":"haha2","p2":2.00}Bean1 [p1=haha1, p2=1.00]Bean2 [p1=haha2, p2=2.00]

7.反序列扩展

Jackson本身提供了对序列化和反序列扩展的功能,对应特殊的Bean可以自己定义反序列类,比如针对Bean2,可以实现Bean2Deserializer,然后在ObjectMapper进行注册

ObjectMapper mapper = new ObjectMapper();SimpleModule desModule = new SimpleModule("testModule");desModule.addDeserializer(Bean2.class, new Bean2Deserializer(Bean2.class));mapper.registerModule(desModule);

扩展

Json本身并没有存放数据类型,只有数据本身,那应该类Json的序列化方式应该都存在此问题;

1.FastJson分析

准备测试代码如下:

public class FJTest {     public static void main(String[] args) {        Bean1 bean1 = new Bean1("haha1", new BigDecimal("1.00"));        Bean2 bean2 = new Bean2("haha2", new BigDecimal("2.00"));         String jsonString1 = JSON.toJSONString(bean1);        String jsonString2 = JSON.toJSONString(bean2);         System.out.println(jsonString1);        System.out.println(jsonString2);         Bean1 bean11 = JSON.parseObject(jsonString1, Bean1.class);        Bean2 bean22 = JSON.parseObject(jsonString2, Bean2.class);         System.out.println(bean11.toString());        System.out.println(bean22.toString());     } }

结果如下:

{"p1":"haha1","p2":1.00}{"p1":"haha2","p2":2.00}Bean1 [p1=haha1, p2=1.00]Bean2 [p1=haha2, p2=2.00]

可以发现FastJson并不存在此问题,查看源码,定位到DefaultJSONParser的parse方法,部分代码如下:

public Object parse(Object fieldName) {        final JSONLexer lexer = this.lexer;        switch (lexer.token()) {            case SET:                lexer.nextToken();                HashSet set = new HashSet();                parseArray(set, fieldName);                return set;            case TREE_SET:                lexer.nextToken();                TreeSet treeSet = new TreeSet();                parseArray(treeSet, fieldName);                return treeSet;            case LBRACKET:                JSONArray array = new JSONArray();                parseArray(array, fieldName);                if (lexer.isEnabled(Feature.UseObjectArray)) {                    return array.toArray();                }                return array;            case LBRACE:                JSONObject object = new JSONObject(lexer.isEnabled(Feature.OrderedField));                return parseObject(object, fieldName);            case LITERAL_INT:                Number intValue = lexer.integerValue();                lexer.nextToken();                return intValue;            case LITERAL_FLOAT:                Object value = lexer.decimalValue(lexer.isEnabled(Feature.UseBigDecimal));                lexer.nextToken();                return value;            case LITERAL_STRING:                String stringLiteral = lexer.stringVal();                lexer.nextToken(JSONToken.COMMA);                 if (lexer.isEnabled(Feature.AllowISO8601DateFormat)) {                    JSONScanner iso8601Lexer = new JSONScanner(stringLiteral);                    try {                        if (iso8601Lexer.scanISO8601DateIfMatch()) {                            return iso8601Lexer.getCalendar().getTime();                        }                    } finally {                        iso8601Lexer.close();                    }                }                 return stringLiteral;            case NULL:                lexer.nextToken();                return null;            case UNDEFINED:                lexer.nextToken();                return null;            case TRUE:                lexer.nextToken();                return Boolean.TRUE;            case FALSE:                lexer.nextToken();                return Boolean.FALSE;            ...省略...}

类似jackson的方式,根据不同的类型做不同的数据处理,同样2.00也被认为是float类型,同样需要检测是否开启Feature.UseBigDecimal特性,只不过FastJson默认开启了此功能;

2.Protostuff分析

下面再来看一个非Json类序列化方式,看protostuff是如果处理此种问题的;

准备测试代码如下:

@SuppressWarnings("unchecked")public class PBTest {     public static void main(String[] args) {        Bean1 bean1 = new Bean1("haha1", new BigDecimal("1.00"));        Bean2 bean2 = new Bean2("haha2", new BigDecimal("2.00"));         LinkedBuffer buffer1 = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE);        Schema schema1 = RuntimeSchema.createFrom(bean1.getClass());        byte[] bytes1 = ProtostuffIOUtil.toByteArray(bean1, schema1, buffer1);         Bean1 bean11 = new Bean1();        ProtostuffIOUtil.mergeFrom(bytes1, bean11, schema1);        System.out.println(bean11.toString());         LinkedBuffer buffer2 = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE);        Schema schema2 = RuntimeSchema.createFrom(bean2.getClass());        byte[] bytes2 = ProtostuffIOUtil.toByteArray(bean2, schema2, buffer2);         Bean2 bean22 = new Bean2();        ProtostuffIOUtil.mergeFrom(bytes2, bean22, schema2);        System.out.println(bean22.toString());     }}

结果如下:

Bean1 [p1=haha1, p2=1.00]Bean2 [p1=haha2, p2=2.00]

可以发现Protostuff也不存在此问题,原因是因为Protostuff在序列化的时候就将类型等信息存放在二进制中,不同的类型给定了不同的标识,RuntimeFieldFactory列出了所有标识:

public abstract class RuntimeFieldFactory
implements Delegate
{ static final int ID_BOOL = 1, ID_BYTE = 2, ID_CHAR = 3, ID_SHORT = 4, ID_INT32 = 5, ID_INT64 = 6, ID_FLOAT = 7, ID_DOUBLE = 8, ID_STRING = 9, ID_BYTES = 10, ID_BYTE_ARRAY = 11, ID_BIGDECIMAL = 12, ID_BIGINTEGER = 13, ID_DATE = 14, ID_ARRAY = 15, // 1-15 is encoded as 1 byte on protobuf and // protostuff format ID_OBJECT = 16, ID_ARRAY_MAPPED = 17, ID_CLASS = 18, ID_CLASS_MAPPED = 19, ID_CLASS_ARRAY = 20, ID_CLASS_ARRAY_MAPPED = 21, ID_ENUM_SET = 22, ID_ENUM_MAP = 23, ID_ENUM = 24, ID_COLLECTION = 25, ID_MAP = 26, ID_POLYMORPHIC_COLLECTION = 28, ID_POLYMORPHIC_MAP = 29, ID_DELEGATE = 30, ID_ARRAY_DELEGATE = 32, ID_ARRAY_SCALAR = 33, ID_ARRAY_ENUM = 34, ID_ARRAY_POJO = 35, ID_THROWABLE = 52, // pojo fields limited to 126 if not explicitly using @Tag // annotations ID_POJO = 127; ......}

序列化的时候是已如下格式来存储数据的,如下图所示:

图片描述

tag里面包含了字段的位置标识,比如第一个字段,第二个字段…,以及类型信息,可以看一下两个bean序列化之后的二进制信息:

10 5 104 97 104 97 49 18 4 49 46 48 4810 5 104 97 104 97 50 19 98 4 50 46 48 48 20

104 97 104 97 49和104 97 104 97 50分别是:haha1和haha2;49 46 48 48和50 46 48 48分别是1.00和2.00;

Bean2存储的数据量明细比Bean1大,因为Bean2中的p2作为Object存储,需要存储Object的起始标识和结束标识,还需要保存具体的类型信息;

更多可以参考:

总结

类Json序列化方式本身没有保存数据的类型,所以在反序列时有些类型不能区分,只能通过设置特性的方式来解决,但是json格式有更好的可读性;直接序列化为二进制的方式可读性差点,但是可以将很多信息保存进去,更加完善;

示例代码地址

转载地址:http://repdl.baihongyu.com/

你可能感兴趣的文章